Deep Reinforcement Learning Attention Selection for Person Re-Identification
نویسندگان
چکیده
Existing person re-identification (re-id) methods assume the provision of accurately cropped person bounding boxes with minimum background noise, mostly by manually cropping. This is significantly breached in practice when person bounding boxes must be detected automatically given a very large number of images and/or videos processed. Compared to carefully cropped manually, auto-detected bounding boxes are far less accurate with random amount of background clutter which can degrade notably person re-id matching accuracy. In this work, we develop a joint learning deep model that optimises person re-id attention selection within any auto-detected person bounding boxes by reinforcement learning of background clutter minimisation subject to re-id label pairwise constraints. Specifically, we formulate a novel unified re-id architecture called Identity DiscriminativE Attention reinforcement Learning (IDEAL) to accurately select re-id attention in auto-detected bounding boxes for optimising re-id performance. Our model can improve re-id accuracy comparable to that from exhaustive human manual cropping of bounding boxes with additional advantages from identity discriminative attention selection that specially benefits re-id tasks beyond human knowledge. Extensive comparative evaluations demonstrate the re-id advantages of the proposed IDEAL model over a wide range of state-of-the-art re-id methods on two auto-detected re-id benchmarks CUHK03 and Market-1501.
منابع مشابه
Constrained Deep Metric Learning for Person Re-identification
Person re-identification aims to re-identify the probe image from a given set of images under different camera views. It is challenging due to large variations of pose, illumination, occlusion and camera view. Since the convolutional neural networks (CNN) have excellent capability of feature extraction, certain deep learning methods have been recently applied in person re-identification. Howeve...
متن کاملHarmonious Attention Network for Person Re-Identification
Existing person re-identification (re-id) methods either assume the availability of well-aligned person bounding box images as model input or rely on constrained attention selection mechanisms to calibrate misaligned images. They are therefore sub-optimal for re-id matching in arbitrarily aligned person images potentially with large human pose variations and unconstrained auto-detection errors....
متن کاملPerson Re-identification: Past, Present and Future
Person re-identification (re-ID) has become increasingly popular in the community due to its application and research significance. It aims at spotting a person of interest in other cameras. In the early days, hand-crafted algorithms and small-scale evaluation were predominantly reported. Recent years have witnessed the emergence of large-scale datasets and deep learning systems which make use ...
متن کاملCross Domain Knowledge Transfer for Person Re-identification
Person Re-Identification (re-id) is a challenging task in computer vision, especially when there are limited training data from multiple camera views. In this paper, we propose a deep learning based person re-identification method by transferring knowledge of mid-level attribute features and high-level classification features. Building on the idea that identity classification, attribute recogni...
متن کاملPerson Depth ReID: Robust Person Re-identification with Commodity Depth Sensors
This work targets person re-identification (ReID) from depth sensors such as Kinect. Since depth is invariant to illumination and less sensitive than color to day-by-day appearance changes, a natural question is whether depth is an effective modality for Person ReID, especially in scenarios where individuals wear different colored clothes or over a period of several months. We explore the use o...
متن کامل